With open facilities, the Brazilian Synchrotron Light Laboratory (LNLS) annually welcomes about 1200 Brazilian and foreign researchers, committed to more than 400 studies that result in approximately 200 articles published in scientific journals. Check out below some of the many investigations that have benefited from LNLS facilities.

May 7th, 2021

CNPEM/MCTI researchers and collaborators investigate the confinement of long infrared waves in tin oxide nanobelts.

Infrared light is a band of the electromagnetic spectrum whose waves have lengths ranging from 750 nanometers to 100 microns. Three sub-bands can be defined within this spectral range, called near, medium and far infrared. Near infrared is routinely applied to remote controls, presence sensors and other metrology tools while medium infrared is explored in sensors and heat cameras. Finally, far infrared, commonly referred to as terahertz radiation because it is close to these frequencies, is used in non-destructive probes and gas spectrometers.

November 10th, 2020

Equipment improves the investigation of materials for fuel cells, batteries and electrolysers

Fossil fuels are the main source of energy in the world. However, the search for clean, renewable, and cheap energy sources has intensified recently, especially with the growing consensus that the rise in the average temperature of the planet is caused by human action. In this context, electrochemical devices, which involve reactions for the transformation of chemical energy into electrical energy, appear as a viable option to fossil fuels.

August 20th, 2020

Research reveals mechanisms of action of iron nanoparticles used in aquifer decontamination

Chlorinated hydrocarbons are among the most persistent contaminants in groundwater reserves – aquifers – worldwide. The problem is characteristic of industrialized regions, where substances were widely used, until the 1980s, as solvents, degreasers, in enamels for car painting and in dry cleaning, among other applications. Very small amounts of these pollutants are enough to make these waters unfit for human consumption, as they cause damage to the kidneys and liver, and cancer.

July 31st, 2020

Research explores wave-particle duality to accelerate light in a two-dimensional crystal using functional substrates

The understanding of light and its interaction with materials was, in the last century, an important way for scientific discoveries. A prominent example is the photoelectric effect: the emission of electrons by materials when subjected to the incidence of light at certain wavelengths. Wave theories already explained the behavior of light in many optical phenomena, but were not able to fully explain the characteristics of the photoelectric effect. The explanation for this phenomenon, as proposed by Einstein, required that the energy associated with light could only assume well-defined values, said to be discrete or quantized, that is, light should also have properties normally associated with particles.


June 30th, 2020

Research reveals new mechanisms and strategies to break plant polysaccharides and generate interesting by-products

Polysaccharides are molecules ubiquitous in nature, serving as a natural barrier for plants, energy sources for algae, and making up the cell wall of fungi. The deconstruction or modification of these polysaccharides is of great industrial interest, as in the textile and paper industry, as well as for the generation of biofuels and renewable chemical intermediates. Currently, the use of these polysaccharides in by-products of industrial interest requires the use of chemical reagents that generate environmental impacts or is carried out by industrial enzymes that are still not very efficient.

May 28th, 2020

Researchers achieve unprecedented details of the shape, composition and preservation of microfossils

For decades, scientists have been using fossils of microorganisms to better understand the origin and evolution of life on Earth, but this branch of palaeobiology has taken a great leap forward with the development of novel imaging techniques. Historically, the study of the earliest traces of life on Earth has been surrounded by a lot controversy and technical challenges. Sometimes it is even difficult to tell out if a structure is really a fossil or… just an artefact.

March 12th, 2020

Research investigates new niobium-based materials for improving electrical energy storage

The search for clean and renewable energy sources has intensified in recent years, due to the continuous increase in the concentration of greenhouse gases in the atmosphere, such as carbon dioxide. Also part of this search is the development of new systems to store and supply energy for various applications, from electric cars and buses to portable electronics. Thus, devices such as lithium batteries, flow batteries and supercapacitors are studied to meet these new demands.

February 4th, 2020

Research contributes to the design of more effective antibiotics and anticancer compounds

Antibiotic resistance is a very pressing public health issue. Drug resistant bacteria are on the rise, and the number of antibiotics available to fight them are not enough. Infections by drug resistant bacteria is especially a serious problem for people with compromised immune systems, such as cancer and AIDS patients.

January 8th, 2020

Research investigates the use of nanoparticles to accurately deliver drugs to pathogens

Antibiotic resistant bacteria are one of the most alarming public health problems, causing approximately 700,000 fatalities each year. The emergence of new resistant bacteria and the lack of effective drugs are some of the challenges in this complex medical landscape. If nothing is done, this number is estimated to rise to around 10 million deaths by 2050. The administration of multiple cycles of antibiotics stimulates the emergence of resistant bacteria, and multidrug-resistant pathogens force patients into prolonged hospital stays, also increasing the costs associated with treatment.

December 19th, 2019

Research presents nanoscale chemical composition mapping of materials for solar energy production

The search for clean and renewable energy sources has intensified in recent years, including, for example, the conversion of sunlight into electricity through photovoltaic cells. Simply put, sunlight incident on these devices is absorbed by electrons in the material. They are expelled from the atoms or molecules to which they were associated, forming the electric current that will be used to charge a battery or to operate other electric devices.