Laboratório Nacional
de Luz Síncrotron






Identification of a new genetic mutation associated with intellectual disability

Study contributes to the understanding of mechanisms involved in neurodevelopmental disorders

Once a disease-related protein or enzyme is identified as a therapeutic target, the study of its three-dimensional structure - the positions of each of its atoms and their interactions - allows a deeper understanding of its mechanisms of action.

This is possible not only for these substances produced by microorganisms, such as viruses or bacteria, capable of attacking our body. It is also possible, for example, to understand molecules normally produced by the human body itself, but which had their structure and function altered due to some genetic mutation.


New fertilizer for controlled release of nutrients

Research investigates material based on poly(butylene succinate), urea and clay

In agricultural production, several of the nutrients needed for the growth and development of plants are supplied or supplemented by fertilizers. Some nutrients, such as phosphorus ($ \rm P $) and potassium ($ \rm K $), are needed in large quantities, but obtained from limited mineral sources. Others - such as manganese ($ \rm Mn $), copper ($ \rm Cu $) or zinc ($ \rm Zn $) - are only needed in small quantities and the excess can be toxic to plants or to important microorganisms present in the soil. Therefore, there is an intense research into new fertilizers that allow the rational delivery of the nutrients necessary for agriculture, avoiding their use in excessive, inefficient use, or environmentally harmful ways.


A novel approach to protein crystallization

Research investigates method for the production of protein crystals, based on thin films organized by an external electric field

Once a disease-related protein is identified as a therapeutic target, the study of its three-dimensional structure - the positions of each of its atoms and their interactions - allows a deep understanding of its action in the body, and its interaction with a potential drug. In this way, it is possible to discover potential new drugs, or to understand the functioning of known drugs and to increase their effectiveness.

Protein crystallography is an essential tool in the investigation of the three-dimensional structure of these molecules and, consequently, of their biological function. So much so that about 90% of the currently known protein structures were determined using X-ray diffraction in protein crystals. However, in order to apply this technique, it is necessary to obtain a protein crystal of adequate quality, which requires quite specific conditions.


In Search of Fingerprints for Atmospheric Pollution

Research determines markers to identify those responsible for the emission of iron-rich particles in cities

The contamination of the atmosphere by gases and solid particles affects not only human health in urban centers but also the ecosystem. The management of air quality depends on several actions including the establishment of quality standards, the regulation of the release of pollutants, and the monitoring of air quality in a given region.

Programs for air quality monitoring can point out levels of pollutants in the atmosphere and assess their compliance with standards set by legislation. However, they are not able to identify the individual contribution of each source responsible for the emission.


Porous Nanostructures Inspired in Biological Systems

Research investigates reproducing the morphology of complex biological systems in the nanoscale for technological purposes

The morphology of biological systems has fascinated both architects and scientists, and their reproduction in the nanoscale could be very useful for technological purposes. This type of structure is already considered a candidate for applications in chemical catalysis, air filters for virus elimination, and membranes for water purification and separation of proteins.


Nano-opto-electronics with Soapstone

Research shows potential of combining mineral with graphene for the design of new devices

The development of electronic devices in the nanometric scale depends on the search for materials that have appropriate characteristics, and that are also efficient and inexpensive. This is the case of graphene, a material formed by a single layer of carbon atoms obtained from graphite. Graphene is a conductor with excellent optical and electrical properties that can be easily altered by the incidence of electric fields or light.

In addition, several other interesting structural, electronic and optical properties can be obtained by combining graphene with other materials. These new properties arise due to changes in the electronic structure in the interface of different materials when they are brought into contact. In this scenario, the search for new materials and ways of combining them becomes a natural trend.


Nano-Fried Eggs: nanoparticles with optical and magnetic properties

Results have potential applications in the production of biomedical images and in the detection of individual molecules

Due to their extremely small size, and properties adaptable to virtually any application, nanoparticles have been attracting the interest of a wide range of science and technology fields. The characteristics of these tiny particles can be controlled by means of their composition, size and shape. Additionally, by combining different materials, it is possible to include different properties in the same nanoparticle or to make new properties emerge.

Furthermore, depending on the crystalline structure and the miscibility of the precursor materials at the nanoscale, they may segregate into different structures, such as core-shell – in which the nanoparticles’ core and surface are each composed of different materials – or Janus – in which the surface of the nanoparticles is composed of two or more materials.


Nanotechnology in oil exploration

Research investigates use of nanoparticles for advanced oil recovery

Brazil is a pioneering country in the exploration of oil in deep waters and a great quantity of this fossil fuel is stored in the porous space of carbonate rocks, especially in the pre-salt layer. These rocks are very heterogeneous and have complex pore systems, bringing great challenges to the extraction of oil and gas.

After drilling an oil or gas reservoir, the natural pressure inside it causes the contents to flow naturally to the surface where the fluid is collected and directed to a tanker. However, a few years after the opening of the well, the amount of oil extracted daily tends to decrease due to the drop in internal well pressure.


First report of inorganic nanoparticles activity as artificial pro-enzymes

Research opens perspective for treatment of several diseases tailored to the needs of each patient

From the biochemical point of view, we are a complex set of interconnected chemical reactions. The molecules that make up our bodies are in constant transformation, and this is what makes it possible for us to get energy from food, to regenerate damage to our tissues, and to synthesize the compounds necessary for life.

These modifications usually occur with the aid of other molecules called enzymes, which promote and accelerate chemical reactions without being consumed during the process.


Unprecedented 3D images of neurons in healthy and epileptic brains

Results open new perspectives for the study of neurodevelopment and neurodegenerative diseases

A comprehensive understanding of the brain, its development, and eventual degeneration, depends on the assessment of neuronal number, spatial organization, and connectivity. However, the study of the brain architecture at the level of individual cells is still a major challenge in neuroscience.

In this context, Matheus de Castro Fonseca, from the Brazilian Biosciences National Laboratory (LNBio), and collaborators [1] used the facilities of the Brazilian Synchrotron Light Laboratory (LNLS) to obtain, for the first time, three-dimensional images in high resolution of part of the neuronal circuit, observed directly in the brain and with single cell resolution.