English

VISÃO GERAL

VOLTAR

The XRF beamline is an experimental station dedicated to X-ray Fluorescence Microscopy (XRFM), X-ray Fluorescence Tomography (XFCT) and Total Reflection X-ray Fluorescence (TXRF) analysis in the hard X-rays energy range (5 to 20 keV). The beamline’s focus is on the determination and mapping of trace chemical elements in samples with applications in the fields of analytical chemistry, biomedicine, environmental geochemistry and materials science.

XRF’s source is a 1.67T bending magnet. The monochromator vacuum chamber can be laterally displaced, so that the whole synchrotron spectra can also be used to excite the samples. The experimental facilities include one station consisting of a high vacuum chamber in which grazing incidence x-ray fluorescence experiments can be carried out. The chamber is equipped with remote-controlled XY$\rm \theta$y sample stages and a HPGe solid state detector, optimised for the detection of light element. The whole setup is mounted in the motorised lift table, which allows vertical positioning of the instruments on the plane where the incoming beam is mostly linearly polarized.

Applications include 2D XRF mapping and speciation of trace elements at 20 microns resolution, 3D information of elements in volumetric samples, analysis of very small masses deposited on flat substrate, trace impurities on surfaces of flat samples, chemical depth profiling surface analysis (from sub nm to mm range).

CONTATO & EQUIPE


Telefone da Linha de Luz: +55 19 3512 1129

Coordenação: Carlos Alberto Perez
Telefone: +55 19 3517 5081
E-mail: carlos.perez@lnls.br

 

Clique aqui  para mais informações sobre a equipe da Linha de Luz.

TÉCNICAS EXPERIMENTAIS

As técnicas e configurações experimentais a seguir estão disponíveis nesta linha de luz. Para saber mais sobre as limitações e requerimentos das técnicas, contate o coordenador da linha de luz antes de submeter sua proposta.

X-ray Fluorescence (XRF) Analysis

X-ray Fluorescence (XRF) is a well-established bulk analytical method for qualitative as well as quantitative determination of several elements in a sample, independent of their chemical form. Depending on the detection system configuration, can be classified as Energy Dispersive (EDXRF) or Wavelength Dispersive (WDXRF) systems.

Setup: X-ray Fluorescence Microscopy (XRFM)

This setup allows performing experiments with an X-ray microbeam. The microfocusing optics consists of a pair of bendable mirrors arranged in the so called Kirkpatrick-Baez configuration (KB). The X-ray microbeam is around 12 microns (vertical) by 22 microns (horizontal) in size. Fully remote-controlled XYZz sample stages can operate in air or under a nitrogen gas environment. The $\rm \mu$-XRF setup also includes an optical microscope and a Silicon Drift Detector (SSD).

Other setups include:

  • Setup: Grazing Incidence X-ray Fluorescence Analysis (GI-XRF)
  • Setup: X-ray Fluorescence Tomography (XFCT)
  • Setup: Total Reflection X-ray Fluorescence (TXRF)

LAYOUT & ELEMENTOS ÓTICOS


 

 

ElementoTipoPosição[m]Descrição
SOURCEBending Magnet0.0Bending Magnet D09 exit B (15°), 1.67 T , 0.92 mm x 0.57 mm
MonoDouble Crystal Monochromator11.2Si(111), Si(220), channel-cut type
M1Elliptical Vertical Micro- focusing Mirror14.9Rh coated, RT=334m (center), $ \theta$=4 mrad
M2Elliptical Horizontal Microfocusing Mirror15.3Rh coated, RT = 176m (center), $ \theta$=4 mrad

PARÂMETROS

ParâmetroValorCondição
Energy range [keV]5-20Si(111) / Si(220)
Energy resolution [$ \Delta$E/E]$ 10^{-4}$Si(111)
Beam size at sample [$ \mu \rm m^{2}$, FWHM]22 x 12at 10 keV
Beam divergence at sample [$ \rm mrad^{2}$, FWHM]10 x 1at 10 keV
Flux density at sample [ph/s/$ \rm mm^{2}$/100 mA]$ 2 \times 10^{8}$at 10 keV
Flux density at focal spot [ph/s/100mA]$ 2 \times 10^{12}$White beam

INSTRUMENTAÇÃO

InstrumentoTipoModeloEspecificaçõesFabricante
DetectorSilicon driftAXAS-A$ 30 \rm mm^{2}$ SDD, FWHM $ \leq$ 139eV at 5.9keVKETEK GmbH
DetectorSilicon driftAXAS-A$ 7 \rm mm^{2}$ SDD, FWHM $ \leq$ 139eV at 5.9keVKETEK GmbH
DetectorHPGeGUL0035$ 30 \rm mm^{2}$ Ultra-LGe, FWHM = 140 eV at 5.9keVCanberra
CryostatCryostream Cooler700 SeriesMinimum of 173K, with a gas stability of 0.1KOxford

CONTROLE E AQUISIÇÃO DE DADOS

All beamline controls are done through EPICS (Experimental Physics and Industrial Control System), running on a PXI from National Instruments. The data acquisition is done using a Red Hat workstation with the Py4Syn, developed at LNLS by SOL group. CSS (Control System Studio) are used as a graphical interface to display and control the beamline devices. Point-to-point or continuous scanning (“on-the-fly”) modes of operation can be used for data acquisition in 2D/3D experiments.

REQUISIÇÃO DE TEMPO DE FEIXE

Chamados de submissão de propostas são abertos usualmente duas vezes ao ano, um para cada semestre. Todas as propostas de pesquisa acadêmica precisam ser submetidas eletronicamente através do portal SAU Online. Saiba mais sobre o processo de submissão de propostas aqui.

COMO CITAR ESTA LINHA DE LUZ

Usuários devem declarar a utilização das instalações do LNLS em qualquer artigo, tese ou outro material publicado que utilize dados obtidos na realização de sua proposta.

Texto de apoio para declaração/agradecimento:

This research used resources of the Brazilian Synchrotron Light Laboratory (LNLS), an open national facility operated by the Brazilian Centre for Research in Energy and Materials (CNPEM) for the Brazilian Ministry for Science, Technology, Innovations and Communications (MCTIC). The _ _ _ beamline staff is acknowledged for the assistance during the experiments.

Ou:

Esta pesquisa utilizou recursos do Laboratório Nacional de Luz Síncrotron (LNLS), uma instalação nacional aberta do Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC) operada pelo Centro Nacional de Pesquisa em Energia e Materiais (CNPEM). Agradecemos a equipe da Linha de Luz _ _ _ pela assistência durante os experimentos.

 


 Adicionalmente, em caso de publicação relacionada a esta instalação, favor citar o artigo abaixo.

PÉREZ, C. A., RADTKE, M., SÁNCHEZ, H. J., TOLENTINO, H., NEUENSCHWANDER, R. T., BARG, W., RUBIO, M., BUENO, M. I. S., RAIMUNDO I. M. & ROHWEDDER, J. J. R., Synchrotron Radiation X-Ray Fluorescence at the LNLS: Beamline Instrumentation and Experiments, X-Ray Spectrometry 28, 320–326 (1999). doi: 10.1002/(SICI)1097-4539(199909/10)28:53.0.CO;2-1

The x-ray fluorescence beamline of the Laboratorio Nacional de Luz S´ıncrotron (LNLS) is described. The main optical component of the beamline is a silicon (111) channel-cut monochromator, which can tune energies between 3 and 14 keV. A general description of two experimental stations is given. Beam characterization was done by measuring experimental parameters such as vertical profile and monochromatic flux. These results show that the photon flux at 8 keV in an area of 20 mm2 is 4.2 × 109 photons s−1. The possibility of achieving fine tuning of energies (high resolution) was confirmed. This paper presents some original results derived from the commissioning of the beamline, such as a comparison of detection limits in different experimental conditions, and a novel mechanical system to align capillaries together with a semi-automatic adjustment procedure. So far, there have been several proposals to perform a variety of experiments at this beamline, covering different fields, such as physics, chemistry, geology and biology.

PUBLICAÇÕES

Abaixo está disponível a lista de artigos científicos produzidos com dados obtidos nas instalações desta Linha de Luz e publicados em periódicos indexados pela base de dados Web of Science.

Atenção Usuários: Dada a importância dos resultados científicos anteriores para a processo geral de avaliação das propostas, recomenda-se que os Usuários verifiquem e atualizem suas publicações tanto no portal SAU Online quanto na base de dados da Biblioteca do CNPEM. As atualizações da base de dados da biblioteca devem ser feitas enviando a informação bibliográfica completa para a Biblioteca (biblioteca@cnpem.br). As publicações são incluídas após checagem pela equipe da biblioteca e pela coordenação das linhas de luz. 

 

MAIS PUBLICAÇÕES


 XRF 

 Dias, C. S. B.; Garcia, F.; Mazali, I. O.; Cardoso, M. B.; Silva, J. M. S.. Direct route for preparing multi-oxide inorganic nanocomposites of nanoparticles-decorated nanotubes, Journal of Alloys and Compounds, v. 774, p. 1133-1139, 2019. DOI: 10.1016/j.jallcom.2018.09.358


 XRF 

 Mera, M. F.; Rubio, M. V.; Pérez, C. A.; Cazón, S. ; Merlo, M. ; Muñoz, S. E.. SR induced micro-XRF for studying the spatial distribution of Pb in plants used for soil phytoremediation, Radiation Physics and Chemistry, v. 154, p. 69-73, 2019. DOI: 10.1016/j.radphyschem.2018.05.001


 XRD2   XRF 

 Callefo, F. ; Ricardi-Branco, F.; Hartmann, G. A. ; Galante, D.; Rodrigues, F.; Maldanis, L.; Yokoyama, E.; Teixeira, V. C.; Noffke, N. ; Bower, D. M. ; Bullock, E. S. ; Braga, A. H.; Coaquira, J. A. H.; Fernandes, M. A.. Evaluating iron as a biomarker of rhythmites - An example from the last Paleozoic ice age of Gondwana, Sedimentary Geology, v. 383, p. 1-15, 2019. DOI: 10.1016/j.sedgeo.2019.02.002


 XRF 

 Leani, J. J.; Robledo, J. I.; Sánchez, H. J.. Energy dispersive inelastic X-ray scattering spectroscopy – A review, Spectrochimica Acta Part B-Atomic Spectroscopy, v. 154, p. 10-24, 2019. DOI: 10.1016/j.sab.2019.02.003


 IMX   XRF 

 Martinez-Zelaya, V. R. ; Zarranz, L. ; Herrera, E. Z. ; Alves, A. T. ; Uzeda, M. J. ; Mavropoulos, E.; Rossi, A. L.; Mello, A.; Granjeiro, J. M.; Calasans-Maia, M. D.; Rossi, A. M.. In vitro and in vivo evaluations of nanocrystalline Zn-doped carbonated hydroxyapatite/alginate microspheres: zinc and calcium bioavailability and bone regeneration, International Journal of Nanomedicine, v. 14, p. 3471-3490, 2019. DOI: 10.2147/IJN.S197157


 XRF 

 Lamela, P. A.; Navoni, J. A. ; Pérez, R. D.; Pérez, C. A.; Vodopivez, C. L. ; Curstosi, A. ; Bongiovanni, G. A.. Analysis of occurrence, bioaccumulation and molecular targets of arsenic and other selected volcanic elements in Argentinean Patagonia and Antarctic ecosystems, Science of the Total Environment, v. 681, p. 379-391, 2019. DOI: 10.1016/j.scitotenv.2019.05.096


MAIS PUBLICAÇÕES

FOTOS


XRF: Arranjo de TXRF / TXRF setup



Português: Câmara de vácuo mostrando o arranjo de TXRF.


English:Vacuum chamber showing the TXRF setup.

XRF: Porta-amostras / Sample holder



Português:Porta-amostras do arranjo da microssonda de raios X.


English: Sample holder of the x-ray microprobe setup.

XRF: Cabana experimental / Experimental hutch



Português: Cabana experimental.


English: Experimental hutch

XRF: Cabana experimental / Experimental hutch



Português: Cabana experimental


English: Experimental hutch

XRF: Montagem de amostra / Sample mounting



Português: Montagem de amostra no arranjo da microssonda de raios X.


English: Sample mounting on the x-ray microprobe setup.

XRF: Instalação para usuários / User support facility



Português:Instalação de suporte para usuários.


English:User support facility.

XRF: Controle da linha / Beamline control



Português: Sala de controle da linha.


English: Beamline control room.