The XRD2 beamline an experimental station dedicated to X-ray Diffraction techniques in the hard x-rays range (3 to 17 keV). Several kinds of measurements can be carried out in this beamline, both in monocrystalline or policrystalline samples and thin films with Grazing-Incidence Diffraction (GID), Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) and in-plane diffraction. Applications include crystallographic characterization of monocrystals at low temperatures (2K-400K), microscopic magnetism, orbital ordering studies, and characterization of thin films, quantum dots and heterostructures.

XRD2 source is a 1.67T bending magnet. The diffraction beamline has a versatile 6+2 circles diffractometer allowing to perform a wide range of diffraction/scattering techniques on different sample environments like: furnaces (< 1000°C), cryojet (> 85 K), humidity (or gas flux) chambers and more recently gas/liquid interfaces on a Langmuir trough. The optics is composed by a Rh-coated vertical-focusing mirror and a sagittal-focusing Si 111 double-crystal monochromator. It provides a 0.5 mm x 1.5 mm focus at the sample position with tunable monochromatic beam ranging from 5 to 15 keV.

Some of the usual experiments are multiple x-ray diffraction of single crystals, x-ray reflectometry, reciprocal space mapping of thin films (epitaxial, polycrystalline, textured), grazing incidence small angle x-ray scattering (GISAXS) and diffraction (GID) in supported nanoparticles or gas/liquid interfaces. Phase identification and depth profile of metallurgical alloys.


Beamline Phone Number: +55 19 3512 1130
Beamline E-mail: xrd2@lnls.br

Coordinator: Marcio Medeiros Soares
Number: +55 19 3512 1051
E-mail: marcio.soares@lnls.br


Click here  for more information on the Beamline team.


The following experimental techniques and setups are available to users in this beamline. To learn more about the techniques’ limitations and requirements (sample, environment, etc.) contact the beamline coordinator before submitting your proposal.

  • θ2θ: thin films, polycrystalline bulk (soil, metallic alloys, fossils, tooth, etc.);
  • X-ray reflectivity (XRR) and texture: thin films;
  • Grazing incidence x-ray diffraction (GID):thin films/coatings; nano-particles;
  • Grazing incidence small angle scattering (GISAXS): supported nano-particles;
  • Grazing incidence x-ray off-specular small angle scattering (GIXOS): liquid-air interface;
  • Reciprocal Space Map (RSM): epitaxial thin films;
  • Multiple x-ray diffraction (MXD): single crystals.




SRCBending Magnet0.000Bending Magnet D10 exit A (4°), 1.67T, 0.87mm x 0.17mm
S1White Beam Slits5.995-
M1Cylindrical Vertical Focusing Mirror7.048Rh coated, RT=?, $ \theta$ = 20mrad
DCMDouble Crystal Monochromator8.749Water-cooled Si (111), Sagitally bent
S2Monochromatic Beam Slits14.690-
S3Sample Slits17.100-
ESExperimental Station17.478-


Energy range [keV]5-15-
Energy resolution [$ \Delta$E/E]$ 8 \times 10^{-4}$-
Beam size at sample [$ \rm mm^{2}$, FWHM]0.5x1.58 keV, vertical and horizontal focus at sample
Beam divergence at sample [$ \rm mrad^{2}$, FWHM]0.6x58 keV, vertical and horizontal focus at sample
Flux density at sample [ph/s/$ \rm mm^{2}$/100mA]$ 5.26 \times 10^{10}$8 keV at sample


Diffractometer6+2 circlesHuber 92784Circles: 4 sample (open eulerian cradle); 2 detector; +2 crystal analyzer; +1 incident angle ($ \pm$ 5°)Huber
Furnaces-F300C300 to 570K Temp. Rate: up to 20K/min Temp. control: 0.1KLNLS in-house development
Furnaces-F1000300 to 1270K Temp. Rate: up to 20K/min Temp. control: 1KLNLS in-house development
Cryogenic-Cryojet5120 to 450K (shared instrument)Oxford
DetectorPunctualCyberstarx1000$ \phi$=30mm, Ti-doped NaI (NaI(TI)), $ 10^6$-
DetectorLinearMythen 1kTotal 1280 pixel with $ 50 \mu m$ each, 2kHz frame rate (shared instrument)Dectris
DetectorLinearMythen 1kTotal 1280 pixel with $ 50 \mu \rm m$ each, 2kHz frame rate (shared instrument)Dectris
DetectorAreaPilatus 100k172x172 $ \mu \rm m^{2}$ pixel area, 487x192 pixel matrixDectris
DetectorAreaPilatus 300k172x172 $ \mu \rm m^{2}$ pixel area, 487x619 pixel matrix (shared instrument)Dectris
Langmuir troughLiquid surface analysis602A62500 $ \rm mm^{2}$, 350 ml, 500mm x 125mm x 3mmNima


The beamline is controlled by the use of EPICS (Experimental Physics and Industrial Control System) running on a PXI from National Instruments. All data acquisition and instrumentation use are done using Psic mode on SPEC (software for instrumentation control and data acquisition in X-ray diffraction experiments from Certified Science Software). Some graphical interfaces and beamline devices can be controlled on CSS (Control System Studio).


Submission calls are usually announced twice per year, one for each semester. All the academic research proposals must be submitted electronically through the SAU Online portal. Learn more about how to submit a proposal here.


Users are required to acknowledge the use of LNLS facilities in any publications and to inform the Laboratory about any publications, thesis and other published materials. Users must also cooperate by supplying this information upon request. 

Support text for acknowledgements:

This research used resources of the Brazilian Synchrotron Light Laboratory (LNLS), an open national facility operated by the Brazilian Centre for Research in Energy and Materials (CNPEM) for the Brazilian Ministry for Science, Technology, Innovations and Communications (MCTIC). The _ _ _ beamline staff is acknowledged for the assistance during the experiments.


Scientific publications produced with data obtained at the facilities of this beamline, and published in journals indexed by the Web of Science, are listed below.

Attention Users: Given the importance of the previous scientific results to the overall proposal evaluation process, users are strongly advised to check and update their publication record both at the SAU Online website and at the CNPEM library database. For the library, updates can be made by sending the full bibliographic data to the CNPEM library (biblioteca@cnpem.br). Publications are included in the database after being checked by the CNPEM librarians and the beamline coordinators.



 XDS   XRD2 

 Marçal, L. A. B.; Richard, M. I.; Persichetti, L. ; Favre-Nicolin, V.; Renevier, H. ; Fanfoni, M. ; Sgarlata, A. ; Schülli, T. U.; Malachias, A.. Modified strain and elastic energy behavior of Ge islands formed on high-miscut Si(001) substrates, Applied Surface Science, v. 466, p. 801-807, 2019. DOI: 10.1016/j.apsusc.2018.10.094

 IR1   XRD2 

 López, E. O.; Rossi, An.L.; Bernardo, P. L.; Freitas, R. O.; Mello, A.; Rossi, A. M.. Multiscale connections between morphology and chemistry in crystalline, zinc-substituted hydroxyapatite nanofilms designed for biomedical applications, Ceramics International, v. 45, n. 1, p. 793-804, 2019. DOI: 10.1016/j.ceramint.2018.09.246


 Michels, L.; Méheust, Y.; Altoé, M. A. S.; Santos, E. V. dos ; Hemmen, H. ; Droppa Jr., R.; Fossum, J. O.; Silva, G. J. da. Water vapor diffusive transport in a smectite clay: Cationic control of normal versus anomalous diffusion, Physical Review E, v. 99, n. 1, p. 013102, 2019. DOI: 10.1103/PhysRevE.99.013102

 XAFS2   XRD2 

 Lavinscky, ; Welsch, A.-M.; Kennedy, B. J. ; Bernardi, M. I. B; Mastelaro, V. R.. Order-disorder phenomena and octahedral tilting in SrTi1-xSnxO3 perovskites - A structural and spectroscopic study, Journal of Solid State Chemistry, v. 269, p. 521-531, 2019. DOI: 10.1016/j.jssc.2018.10.006


 Morales, M.; Droppa, R.; de Mello, S. R. S.; Figueroa, C. A.; Zanatta, A. R.; Alvarez, F.. Self-organized nickel nanoparticles on nanostructured silicon substrate intermediated by a titanium oxynitride (TiNxOy) interface, AIP Advances, v. 8, n. 1, 2018. DOI: 10.1063/1.4993143


 Gonçalves, P. H. R.; Chagas, T.; Nascimento, V. B.; Reis, D. D. dos; Parra, C.; Mazzoni, M. S. C.; Malachias, A.; Magalhães-Paniago, R.. Formation of BixSey Phases Upon Annealing of the Topological Insulator Bi2Se3: Stabilization of In-Depth Bismuth Bilayers, Journal of Physical Chemistry Letters, v.9, n. 5, p. 954-960, 2018. DOI: 10.1021/acs.jeclett.7b03172



XRD2: Visão Geral / Overview

Visão geral da cabana experimental da linha XRD2 com difratômetro de 6+2 círculos ao centro.

Overview of the XRD2 experimental hutch with 6+2 circles difractometer at center.

XRD2: Detectores / Detectors

Detectores Pilatus100K e Pilatus300K (partilhado).

Pilatus100K and Pilatus300K (shared) detectors.

XRD2: Detalhe do Arranjo Experimental / Detail of Experimental Setup

Detalhe do arranjo experimental da XRD2 com amostra no círculo de Euler e fendas anti-espalhamento Xenocs com janela de mica ao fundo.

Detail of XRD2 experimental setup with sample on Eulerian cradle and Xenocs scatterless slits with mica window at background.

XRD2: Cuba de Langmuir / Langmuir Trough

Cuba de Langmuir e espelho defletor usados no experimento de espalhamento em superfícies líquidas.

Langmuir trough and downward deflecting mirror used for scattering experiments at liquid surface.

XRD2: Fornos / Furnaces

Fornos F900C e F300C com janela em Kapton.

F900C and F300C furnaces with Kapton window.

XRD2: Espalhamento de raios x em superfícies líquidas / X-ray scattering at liquid surfaces

Montagem para experimento de espalhamento de raios x em superfícies líquidas com dois detectores de área Pilatus para medida simultânea da região de baixo ângulo (GISAXS/GIXOS) e da região de alto ângulo (GID/GIWAXS).

Setup for x-ray scattering experiments at liquid surfaces with two Pilatus area detectors for simultaneous measurement of the small angle (GISAXS/GIXOS) and wide angle (GID/GIWAXS) scattering.