Overview of the XRD2 experimental hutch with 6+2 circles difractometer at center.


The XRD2 beamline an experimental station dedicated to X-ray Diffraction techniques in the hard x-rays range (3 to 17 keV). Several kinds of measurements can be carried out in this beamline, both in monocrystalline or policrystalline samples and thin films with Grazing-Incidence Diffraction (GID), Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) and in-plane diffraction. Applications include crystallographic characterization of monocrystals at low temperatures (2K-400K), microscopic magnetism, orbital ordering studies, and characterization of thin films, quantum dots and heterostructures.

XRD2 source is a 1.67T bending magnet. The diffraction beamline has a versatile 6+2 circles diffractometer allowing to perform a wide range of diffraction/scattering techniques on different sample environments like: furnaces (< 1000°C), cryojet (> 85 K), humidity (or gas flux) chambers and more recently gas/liquid interfaces on a Langmuir trough. The optics is composed by a Rh-coated vertical-focusing mirror and a sagittal-focusing Si 111 double-crystal monochromator. It provides a 0.5 mm x 1.5 mm focus at the sample position with tunable monochromatic beam ranging from 5 to 15 keV.

Some of the usual experiments are multiple x-ray diffraction of single crystals, x-ray reflectometry, reciprocal space mapping of thin films (epitaxial, polycrystalline, textured), grazing incidence small angle x-ray scattering (GISAXS) and diffraction (GID) in supported nanoparticles or gas/liquid interfaces. Phase identification and depth profile of metallurgical alloys.


The following experimental techniques and setups are available to users in this beamline. To learn more about the techniques’ limitations and requirements (sample, environment, etc.) contact the beamline coordinator before submitting your proposal.

  • θ2θ: thin films, polycrystalline bulk (soil, metallic alloys, fossils, tooth, etc.);
  • X-ray reflectivity (XRR) and texture: thin films;
  • Grazing incidence x-ray diffraction (GID):thin films/coatings; nano-particles;
  • Grazing incidence small angle scattering (GISAXS): supported nano-particles;
  • Grazing incidence x-ray off-specular small angle scattering (GIXOS): liquid-air interface;
  • Reciprocal Space Map (RSM): epitaxial thin films;
  • Multiple x-ray diffraction (MXD): single crystals.




ElementTypePosition [m]Description
SRCBending Magnet0.000Bending Magnet D10 exit A (4°), 1.67T, 0.87mm x 0.17mm
S1White Beam Slits5.995-
M1Cylindrical Vertical Focusing Mirror7.048Rh coated, RT=?, $ \theta$ = 20mrad
DCMDouble Crystal Monochromator8.749Water-cooled Si (111), Sagitally bent
S2Monochromatic Beam Slits14.690-
S3Sample Slits17.100-
ESExperimental Station17.478-


Energy range [keV]5-15-
Energy resolution [$ \Delta$E/E]$ 8 \times 10^{-4}$-
Beam size at sample [$ \rm mm^{2}$, FWHM]0.5x1.58 keV, vertical and horizontal focus at sample
Beam divergence at sample [$ \rm mrad^{2}$, FWHM]0.6x58 keV, vertical and horizontal focus at sample
Flux density at sample [ph/s/$ \rm mm^{2}$/100mA]$ 5.26 \times 10^{10}$8 keV at sample


Diffractometer6+2 circlesHuber 92784Circles: 4 sample (open eulerian cradle); 2 detector; +2 crystal analyzer; +1 incident angle ($ \pm$ 5°)Huber
Furnaces-F300C300 to 570K Temp. Rate: up to 20K/min Temp. control: 0.1KLNLS in-house development
Furnaces-F1000300 to 1270K Temp. Rate: up to 20K/min Temp. control: 1KLNLS in-house development
Cryogenic-Cryojet5120 to 450K (shared instrument)Oxford
DetectorPunctualCyberstarx1000$ \phi$=30mm, Ti-doped NaI (NaI(TI)), $ 10^6$-
DetectorLinearMythen 1kTotal 1280 pixel with $ 50 \mu m$ each, 2kHz frame rate (shared instrument)Dectris
DetectorLinearMythen 1kTotal 1280 pixel with $ 50 \mu \rm m$ each, 2kHz frame rate (shared instrument)Dectris
DetectorAreaPilatus 100k172x172 $ \mu \rm m^{2}$ pixel area, 487x192 pixel matrixDectris
DetectorAreaPilatus 300k172x172 $ \mu \rm m^{2}$ pixel area, 487x619 pixel matrix (shared instrument)Dectris
Langmuir troughLiquid surface analysis602A62500 $ \rm mm^{2}$, 350 ml, 500mm x 125mm x 3mmNima


The beamline is controlled by the use of EPICS (Experimental Physics and Industrial Control System) running on a PXI from National Instruments. All data acquisition and instrumentation use are done using Psic mode on SPEC (software for instrumentation control and data acquisition in X-ray diffraction experiments from Certified Science Software). Some graphical interfaces and beamline devices can be controlled on CSS (Control System Studio).


Users are required to acknowledge the use of LNLS facilities in any publications and to inform the Laboratory about any publications, thesis and other published materials. Users must also cooperate by supplying this information upon request. 

Support text for acknowledgements:

This research used resources of the Brazilian Synchrotron Light Laboratory (LNLS), an open national facility operated by the Brazilian Centre for Research in Energy and Materials (CNPEM) for the Brazilian Ministry for Science, Technology, Innovations and Communications (MCTIC). The _ _ _ beamline staff is acknowledged for the assistance during the experiments.


Scientific publications produced with data obtained at the facilities of this beamline, and published in journals indexed by the Web of Science, are listed below.

Attention Users: Given the importance of the previous scientific results to the overall proposal evaluation process, users are strongly advised to check and update their publication record both at the SAU Online website and at the CNPEM library database. For the library, updates can be made by sending the full bibliographic data to the CNPEM library (biblioteca@cnpem.br). Publications are included in the database after being checked by the CNPEM librarians and the beamline coordinators.



 Szostak, R.; Marchezi, P. E.; Marques, A. S.; Silva, J. C; Holanda, M. S. de ; Soares, M. M.; Tolentino, H. C. N.; Nogueira, A. F.. Exploring the formation of formamidinium-based hybrid perovskites by antisolvent methods: in situ GIWAXS measurements during spin coating, Sustainable Energy & Fuels, v. 3, n. 9, p. 2287-2297, 2019. DOI: 10.1039/c9se00306a


 García Molleja, J.; Bürgi, J. M.; Kellermann, G.; Craievich, A. F.; Neuenschwander, R. T.; Jouan, P.-Y.; Djouadi, M. A.; Piccoli, M.; Bemporad, E.; De Felicis, D. ; Feugeas, J. N.. Synchrotron Radiation Applied to Real-Time Studies of the Kinetics of Growth of Aluminum Nitride Thin Multilayers, Journal of Physical Chemistry B, v. 123, n. 7, p. 1679-1687, 2019. DOI: 10.1021/acs.jpcb.8b09496

 IMX   XRD2 

 Brandão, J. ; Dugato, D. A. ; Seeger, R. L. ; Denardin, J. C.; Mori, T. J. A.; Cezar, J. C.. Observation of magnetic skyrmions in unpatterned symmetric multilayers at room temperature and zero magnetic field, Scientific Reports, v. 9, p. 4144, 2019. DOI: 10.1038/s41598-019-40705-4

 XRD2   XRF 

 Callefo, F. ; Ricardi-Branco, F.; Hartmann, G. A. ; Galante, D.; Rodrigues, F.; Maldanis, L.; Yokoyama, E.; Teixeira, V. C.; Noffke, N. ; Bower, D. M. ; Bullock, E. S. ; Braga, A. H.; Coaquira, J. A. H.; Fernandes, M. A.. Evaluating iron as a biomarker of rhythmites - An example from the last Paleozoic ice age of Gondwana, Sedimentary Geology, v. 383, p. 1-15, 2019. DOI: 10.1016/j.sedgeo.2019.02.002


 Baggio, B. F. ; Vicente, C.; Pelegrini, S. ; Cid, C. C. P. ; Brandt, I. S.; Tumelero, M. A.; Pasa, A. A.. Morphology and Structure of Electrodeposited Prussian Blue and Prussian White Thin Films, Materials, v. 12, n. 7, p. 1103, 2019. DOI: 10.3390/ma12071103

 XDS   XRD2 

 Marçal, L. A. B.; Richard, M. I.; Persichetti, L. ; Favre-Nicolin, V.; Renevier, H. ; Fanfoni, M. ; Sgarlata, A. ; Schülli, T. U.; Malachias, A.. Modified strain and elastic energy behavior of Ge islands formed on high-miscut Si(001) substrates, Applied Surface Science, v. 466, p. 801-807, 2019. DOI: 10.1016/j.apsusc.2018.10.094



XRD2: Visão Geral / Overview

Visão geral da cabana experimental da linha XRD2 com difratômetro de 6+2 círculos ao centro.

Overview of the XRD2 experimental hutch with 6+2 circles difractometer at center.

XRD2: Detectores / Detectors

Detectores Pilatus100K e Pilatus300K (partilhado).

Pilatus100K and Pilatus300K (shared) detectors.

XRD2: Detalhe do Arranjo Experimental / Detail of Experimental Setup

Detalhe do arranjo experimental da XRD2 com amostra no círculo de Euler e fendas anti-espalhamento Xenocs com janela de mica ao fundo.

Detail of XRD2 experimental setup with sample on Eulerian cradle and Xenocs scatterless slits with mica window at background.

XRD2: Cuba de Langmuir / Langmuir Trough

Cuba de Langmuir e espelho defletor usados no experimento de espalhamento em superfícies líquidas.

Langmuir trough and downward deflecting mirror used for scattering experiments at liquid surface.

XRD2: Fornos / Furnaces

Fornos F900C e F300C com janela em Kapton.

F900C and F300C furnaces with Kapton window.

XRD2: Espalhamento de raios x em superfícies líquidas / X-ray scattering at liquid surfaces

Montagem para experimento de espalhamento de raios x em superfícies líquidas com dois detectores de área Pilatus para medida simultânea da região de baixo ângulo (GISAXS/GIXOS) e da região de alto ângulo (GID/GIWAXS).

Setup for x-ray scattering experiments at liquid surfaces with two Pilatus area detectors for simultaneous measurement of the small angle (GISAXS/GIXOS) and wide angle (GID/GIWAXS) scattering.