Laboratório Nacional
de Luz Síncrotron

English

TÉCNICAS

VOLTAR

TÉCNICAS DISPONÍVEIS


 

As técnicas e configurações experimentais a seguir estão disponíveis nesta linha de luz. Para saber mais sobre as limitações e requerimentos das técnicas, contate o coordenador da linha de luz antes de submeter sua proposta.

 

X-RAY ABSORPTION SPECTROSCOPY (XAS)


X-ray absorption spectroscopy (XAS) is a widely used technique for determining the local geometric and/or electronic structure of matter.
Setup: Conventional Total electron yield (TEY) and Fluorescence XAS
This setup is optimized for TEY and fluorescence XAS on “standard samples” in standard sample holders. The setup for these experiments, called BioXAS workstation has two electrometers (Io and sample signal), a silicon drift diode (SDD) fluorescence detector, chamber with a differential pumping and a room temperature sample stage (xyzθ). In order to use this setup, samples/environments must fit within our room temperature sample stage.
Legenda – BioXAS experimental workstation
Recent publications using this setup:
Abdala DB et al., Residence time and pH effects on the bonding configuration of orthophosphate surface complexes at the goethite/water interface as examined by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy, Journal of Colloid and Interface Science 442 (2015) 15–21;
Andrini L et al., Extended and local structural description of a kaolinitic clay, itsfired ceramics and intermediates: An XRD and XANES analysis, Applied Clay Science 124–125 (2016) 39–45;
Dalfovo MC et al., Real-Time Monitoring Distance Changes in Surfactant-Coated Au Nanoparticle Films upon Volatile Organic Compounds (VOCs), J. Phys. Chem. C (2015), 119, 5098−5106;
Yasser AA et al., Photostability of gold nanoparticles with different shapes: the role of Ag clusters, Nanoscale, 2015, 7, 11273.

 

X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)


Setup: Conventional XPS

This setup is intended for XPS on “standard samples” in standard sample holders. The setup for these experiments, called XPS workstation has two electrometers (Io and sample signal), a hemispherical electron analyzer (Phoibos 150), ultra-high vacuum chamber with base pressure about 5×10-10 mbar and a room temperature motorized sample stage (xyzθ). In order to use this setup, samples/environments must fit within our room temperature sample holder inside a high vacuum pre-chamber. The pre-chamber environment allow submitting the samples to different gas atmospheres, while heating up to 900 °C and, after the treatment, the sample holder is inserted within the analysis chamber, using a load lock system.

Legenda: XPS experimental workstation

Recent publications using this setup:

Garcia-Basabe Y et al., The effect of thermal annealing on the charge transfer dynamics of a donor–acceptor copolymer and fullerene: F8T2 and F8T2:PCBM, Phys.Chem.Chem.Phys., 2015,17, 11244;

Larrude DG et al., Electronic structure and ultrafast charge transfer dynamics of phosphorous doped graphene layers on a copper substrate: a combined spectroscopic study, RSC Adv.,2015,5, 74189;

Martins HP et al., X-ray absorption study of the Fe and Mo valence states in Sr2FeMoO6, Journal of Alloys and Compounds 640 (2015) 511–516;

Silva DO et al., Straightforward synthesis of bimetallic Co/Pt nanoparticles in ionic liquid: atomic rearrangement driven by reduction–sulfidation processes and Fischer–Tropsch catalysis, Nanoscale, 2014, 6, 9085.

 

X-RAY MAGNETIC DICHROISM


Em breve.

 

RESONANT AUGER SPECTROSCOPY


Em breve.